

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 6751-6752

Synthesis of phthalates and isophthalates by [3+3] cyclizations of 1,3-bis(silyl enol ethers) with 3-(silyloxy)alk-2-en-1-ones

Stefanie Reim,^a Mathias Lubbe^a and Peter Langer^{a,b,*}

^aInstitut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany ^bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

> Received 7 June 2006; revised 7 July 2006; accepted 18 July 2006 Available online 4 August 2006

Abstract—3-Hydroxyphthalates and 4-hydroxyisophthalates were prepared by sequential [3+3] cyclization reactions of 1,3-bis(silyl enol ethers) with 2- and 3-alkoxycarbonyl-3-(silyloxy)alk-2-en-1-ones. © 2006 Elsevier Ltd. All rights reserved.

Phthalates¹ and isophthalates² occur in a number of pharmacologically relevant natural products and represent important synthetic building blocks. The synthesis of these compounds mainly relies on the oxidation of suitable benzene derivatives.^{1,2} Some years ago, Chan and co-workers reported³ an elegant approach to salicylates based on [3+3] cyclizations of 1,3-bis(silvl enol ethers).⁴ We have recently reported the application of this methodology to the synthesis of a variety of functionalized arenes.⁵ For example, we reported the synthesis of acetophenones by [3+3] cyclization of 1,3-bis(silyl enol ethers) with 2-acetyl-1-(silyloxy)but-1-en-3-one.^{5a} Herein, we report, for the first time, the synthesis of 3-hydroxyphthalates and 4-hydroxyisophthalates by [3+3] cyclizations of 1.3-bis(silvl enol ethers) with 3and 2-alkoxycarbonyl-3-(silyloxy)alk-2-en-1-ones, respectively. The products are not readily available by classic methods.

3-Ethoxycarbonyl-4-(silyloxy)alk-3-en-2-one (2) was prepared by silylation of ethyl 2-(acetyl)acetoacetate. The TiCl₄ mediated [3+3] cyclization of 2 with 1,3-bis-(silyl enol ethers) **1a–d** afforded the novel functionalized isophthalates **3a–d** in moderate to good yields (Scheme 1, Table 1).⁶ The 4-hydroxy-3-acylbenzoates **3e** and **3f** were prepared by cyclization of **2** with 1,3-bis(silyl enol ethers) **1e** and **1f** (available from acetylacetone and benzoylacetone), respectively.

Scheme 1. Synthesis of isophthalates 3a–f. Reagents and conditions: (i) TiCl₄, CH₂Cl₂, -78→20 °C.

Table	1.	Products	and	yields
-------	----	----------	-----	--------

	•		
3	\mathbb{R}^1	\mathbb{R}^2	% (3) ^a
a	OMe	Н	30
b	OMe	OMe	65
c	OEt	Me	48
d	OEt	Et	50
e	Me	Н	40
f	Ph	Н	36

^a Yields of isolated products.

Methyl 4-oxo-2-(silyloxy)pent-2-enoate **4** was prepared by silylation of methyl acetopyruvate. The TiCl₄ mediated [3+3] cyclization of **4** with 1,3-bis(silyl enol ethers) **1a,b,d** afforded the novel functionalized phthalates **5a–c** (Scheme 2, Table 2). The 3-hydroxy-2-acylbenzoates **5d** and **5e** were prepared by cyclization of **4** with 1,3-bis-(silyl enol ethers) **1e** and **1f**, respectively. Chan and co-workers proposed that [3+3] proceed by conjugate addition of the terminal carbon atom of the 1,3-bis(silyl

Keywords: Cyclizations; Phthalic acid derivatives; Silyl enol ethers.

^{*} Corresponding author. Tel.: +49 381 4986410; fax: +49 381 4986412; e-mail: peter.langer@uni-rostock.de

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.07.077

Scheme 2. Synthesis of phthalates 5a–e. Reagents and conditions: (i) TiCl₄, CH₂Cl₂, $-78\rightarrow 20$ °C.

Table 2. Products and yields

	5		
5	\mathbb{R}^1	\mathbb{R}^2	% (5) ^a
a	OMe	Н	17
b	OMe	OMe	45
c	OEt	Et	22
d	Me	Н	34
e	Ph	Н	41

^a Yields of isolated products.

enol ether) onto the 3-(silyloxy)alk-2-en-1-one and subsequent cyclization. The regioselective formation of **5a**-e can be explained by TiCl₄ mediated isomerization of **4** into *iso*-**4** and subsequent conjugate addition of the terminal carbon atom of the 1,3-bis(silyl enol ether) onto *iso*-**4**. The yield of pure **5a** is relatively low, since the regioisomeric product had to be separated (12% yield). In all reactions, 1,3-dicarbonyl compounds were isolated, which were formed by hydrolysis of the corresponding 1,3-bis-silyl enol ethers **1**. This result shows that the latter was not completely consumed during the reaction, which can be explained by partial decomposition or hydrolysis of silyl enol ethers **2** and **4**.

In conclusion, functionalized phthalates and isophthalates were prepared by [3+3] cyclizations of 1,3-bis(silyl enol ethers) with novel 3-(silyloxy)alk-2-en-1-ones.

Acknowledgements

Financial support by the state of Mecklenburg-Vorpommern (Landesforschungsschwerpunkt) is gratefully acknowledged.

References and notes

(a) Birch, A. J.; Wright, J. J. Aust. J. Chem. 1969, 22, 2635;
(b) Parker, K. A.; Spero, D. M.; Koziski, K. A. J. Org.

Chem. **1987**, *52*, 183; (c) Hill, R. K.; Carlson, R. M. *J. Org. Chem.* **1965**, *30*, 2414; (d) Nicolaou, K. C.; Claiborne, C. F.; Paulvannan, K.; Postema, M. H. D.; Guy, R. K. *Chem. Eur. J.* **1997**, *3*, 399; (e) Ziegler, T.; Layh, M.; Effenberger, F. *Chem. Ber.* **1987**, *120*, 1347; (f) Horii, S.; Fukase, H.; Mizuta, E.; Hatano, K.; Mizuno, K. *Chem. Pharm. Bull.* **1980**, *28*, 3601.

- (a) Cabiddu, S.; Fattuoni, C.; Floris, C.; Gelli, G.; Melis, S.; Sotgiu, F. *Tetrahedron* 1990, 46, 861; (b) Fusco, R.; Sannicolo, F. J. Org. Chem. 1981, 46, 83; (c) Pinhey, J. T.; Xuan, P. T. Aust. J. Chem. 1988, 41, 69; (d) Bonner, W. A.; De Graw, J. I. *Tetrahedron* 1962, 18, 1295; (e) House, H. O.; Hudson, C. B. J. Org. Chem. 1970, 35, 647; (f) Horii, S.; Fukase, H.; Mizuta, E.; Hatano, K.; Mizuno, K. Chem. Pharm. Bull. 1980, 28, 3601; (g) Elix, J. A.; Chester, D. O.; Gaul, K. L.; Parker, J. L.; Wardlaw, J. H. Aust. J. Chem. 1989, 42, 1191; (h) Elix, J. A.; Barclay, C. E.; Wardlaw, J. H.; Archer, A. W.; Yu, S.-h.; Kantvilas, G. Aust. J. Chem. 1999, 52, 837.
- (a) Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534; (b) Brownbridge, P.; Chan, T.-H.; Brook, M. A.; Kang, G. J. Can. J. Chem. 1983, 61, 688.
- 4. For a review of 1,3-bis(silyl enol ethers), see: Langer, P. Synthesis 2002, 441.
- For the synthesis of functionalized acetophenones, see: (a) Dede, R.; Langer, P. *Tetrahedron Lett.* 2004, 45, 9177; for dibenzo[b,d]pyran-6-ones: (b) Nguyen, V. T. H.; Langer, P. *Tetrahedron Lett.* 2005, 46, 1013; for 1,4-quinones: (c) Ahmed, Z.; Fischer, C.; Spannenberg, A.; Langer, P. *Tetrahedron* 2006, 62, 4800; for 3-alkylsalicylates: (d) Nguyen, V. T. H.; Bellur, E.; Appel, B.; Langer, P. *Synthesis* 2006, 1103; for 2,5-dihydrobenzo[b]oxepines: (e) Nguyen, V. T. H.; Bellur, E.; Langer, P. *Tetrahedron Lett.* 2006, 47, 113; for fluorenones: (f) Reim, S.; Lau, M.; Langer, P. *Tetrahedron Lett.*, in press, doi:10.1016/ j.tetlet.2006.07.025.
- 6. Typical procedure for the synthesis of phthalates 3 and isophthalates 5: To a stirred CH₂Cl₂ solution (2.5 mL) of 2 (305 mg, 1.25 mmol) was added 1,3-bis(trimethylsilyloxy)-1,4-dimethoxy-1,3-pentadiene (1b) (363 mg, 1.25 mmol) at -78 °C under argon atmosphere. Subsequently, TiCl₄ (0.14 mL, 1.25 mmol) was added. The temperature of the reaction mixture was allowed to rise to 20 °C during 20 h. The solution was poured into an aqueous solution of HCl (10%). The organic and the aqueous layer were separated and the latter was extracted $(3\times)$ with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, n-heptane/ EtOAc = 9:1) to give **3b** as a yellow oil (230 mg, 65%). Silyl enol ethers 2 and 4 could not be prepared in pure form. They were used as crude material. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.39$ (t, ${}^{3}J = 7.3$ Hz, 3H, OCH₂CH₃), 2.23 (s, 3H, CH₃), 2.41 (s, 3H, CH₃), 3.97 (s, 3H, OCH₃), 3.98 (s, 3H, OCH₃), 4.38 (q, ${}^{3}J = 7.3$ Hz, 2H, OCH₂CH₃), 11.30 (s, 1H, OH). ${}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 13.3$, 14.2, 19.8 (CH₃), 52.4, 60.1 (OCH₃), 61.3 (OCH₂CH₃), 111.8, 128.4, 131.7, 134.0, 144.7 (CAr), 156.1 (C-O), 169.5, 171.7 (O-C=O). IR (neat, cm⁻¹): $\tilde{v} = 3422$ (br, w), 2982 (m), 2957 (m), 2939 (m), 2838 (s), 1726 (s), 1683 (s), 1600 (m), 1578 (m). MS (EI, 70 eV): m/z (%) = 282 (M⁺, 35), 250 (93), 237 (23), 222 (100), 205 (26), 194 (43). Anal. Calcd for C₁₄H₁₈O₆ (282.29): C, 59.57; H, 6.43. Found: C, 59.65; H, 6.44.